biomass program

Biomass Gas Cleanup Using a Therminator

DOE OBP Thermochemical Platform Review Meeting June 7-8, 2005

Santosh Gangwal
Research Triangle Institute

- Project Background
- Technical Feasibility and Risks
- Competitive Advantage
- Project Overview
- History and Accomplishments
- Plan/Schedule
- Critical Issues and Show-stoppers
- Plans and Resources for Next Stage
- Summary

Project Background

- Fluidized-bed gasification is a technology of choice for biomass utilization
 - flexibility with respect to fuel and desired end products
 - easy scale up (no known size limitations)
- Gas cleanup to remove particulates, tar, ammonia and hydrogen sulfide is critical to enable widespread deployment
- Project aims to develop a novel therminator process for cleanup of gas from a fluidized-bed biomass gasifier
 - coupled fluid-bed reactors
 - attrition resistant triple function catalyst system

Pathways and Milestones – C-level and Project Milestones

biomass program

Perennial Grasses

Ag Residues Woody Crops

Pulp and Paper

Forest Products

Validate Cost-effective Gas Cleanup Performance

M 4.11.3 M 5.11.3

M 5.12.3

M.6.3.4

M 7.1.4

Validate integrated gasification and gas cleanup at pilot scale

M 4.11.5

M 4.12.3

M 5.11.5

M.6.3.5

M 7.1.5

M 4.12.5

M 5.12.5

Due **Project Milestones** Type Performance Expectations Date 9/30/ Determine optimum Remove tar to $< 0.1 \text{ g/m}^3$, 90% of NH₃, and H₂S to < 20D ppmv in a simulated laboratory reactor catalyst combination 2006 Demonstrate catalyst Circulate attrition-resistant catalyst for 24 hours without 9/30/ circulation in therminator D-J upsets 2006 Conduct a slip-stream test of up to 100-h duration using 8/31/ Slip stream test of actual gas from Cratech's pilot-scale gasifier D 2007 therminator system

Technical Feasibility and Risks

- Technical Feasibility
 - gasification at 730°C
 - tar and ammonia removal at ~650°C
 - reforming
 - cracking
 - continuous catalyst regeneration/makeup
 - heat integration
- Risks
 - catalyst must be attrition resistant
 - catalyst needs to withstand reducing and oxidizing environments

Competitive Advantage

- Significantly higher thermal efficiency than lowpressure combustion: >30% vs <20%
- Cleanup at elevated pressure reduces equipment volume/cost
- Cracking at moderate temperatures compared to Ni-based catalysts (~900°C)
 - reduces catalyst degradation
- Continuous catalyst regeneration ensures high contaminant removal efficiency

Project Overview

biomass program

Objective: Develop the therminator module for biomass gas cleanup at

600-700°C (1112-1292°F).

Goal: tar < 0.1 g/m3

NH₃ > 90% decomposition

 $H_2S < 20 \text{ ppm}$

Duration: 36 months

Tasks: Task 1 Laboratory testing and catalyst scale up

Task 2 Bench-Scale therminator testing

Task 3 Technology demonstration

Task 4 Engineering Evaluation and Commercial Assessment

Team: RTI

Clemson University

Cratech

Sud-Chemie

biomass program

Task 1 Progress to Date

- Baseline catalysts have been selected and a few candidate catalysts have been prepared
- Micro reactor system for NH₃ decomposition study has been commissioned
- Micro reactor system for the cracking studies is nearing completion
- Candidate equilibrium FCC catalyst has been obtained in sufficient quantity
- Spray dryer has been commissioned for preparing FCC-type catalysts

biomass program

Ammonia decomposition as a function of TOS for Amomax-10 and WC catalysts at 650°C

biomass program

Task 2 Progress to Date

- Cold flow model of the therminator has been commissioned
- Data is being obtained to assist in the design of the hot therminator system
- Design of the hot therminator system is about 60% complete

biomass program

Cold Flow Model

Reactor Overflow Option with Loopseal

biomass program

Video of Cold Model

biomass program

Task 3 Progress to Date

- Meetings have been held at Cratech and RTI to discuss fuel choices and integration of Cratech's gasifier with the therminator using a slip stream
- Gas and utility requirements have been determined for slip stream testing
 - syngas

nitrogen

compressed air

cooling water

- instruments air

electricity

biomass program

Cratech Gasification System

- Operating Conditions
 - 1000 lb/hr (7.5×10⁶ BTU/hr; 500KWe)
 - 730°C, 150 psia
- Fuels gasified
 - wood, rice hull, cotton gin trash, sugar cane bagasse
 - easy access to fuel supply
 - 3 to 40% moisture; 15% optimum
- Air-blown (can operate with O₂/steam)
- Steam Generator Available
- Hot candle filter (700-800°C)
- Slip-stream testing capability
- Raw Gas Composition (Air Blown, Mole%)

biomass program

Cratech Fluidized-Bed Biomass Gasifier Typical Gas Composition (Raw, Wet)

Balance

	Volume%	
H_2	10.4	
CH ₄	3.0	
C ₂ H ₄	1.0	
C_2H_6	0.3	
CO	17.0	
CO ₂	15.3	
H ₂ O	12.0	

Contaminants (ppm)

 N_2

H_2S	50	NH_3	1,000
Tar	10.000	Particles	10.000

biomass program

Photo of Cratech Power Process Pilot Plant

biomass program

Task 4 Engineering Evaluation/Commercialization Assessment

- Develop conceptual commercial process
 - electricity
 - engine
 - turbine
 - liquid Fuels
 - FT
 - alcohols
 - hydrogen
- Mass and Energy balances based on experimental data
- Marketing

biomass program

Project Schedule and Milestones

Critical Issues and Show-stoppers

biomass program

Critical Issues

- cost of catalyst replacement due to attrition
- catalyst performance for reducing tar to <
 0.1 g/m³

Show Stoppers

no show stoppers at the present time

Plans and Resources for Next Stage

- Project is on a research track and is at the stage of development research (Gate B)
- Key to success is the development and scaleup of low-cost attrition-resistant triple function catalyst system
- Development partners (Cratech, Sud-Chemie) have been included early in the program to provide guidance towards a commercial goal
- Successful development will move the project to commercial track Gate 4. Ongoing Task 4 will allow efficient technology transfer to involve commercial partner for demonstration at large scale.

biomass program

Project is presently on target with respect to achieving the required milestones

Project Funding:

DOE: \$2 million

Participants: \$0.5 million

FY05 Budget: \$670 K